Proactive Notification Systems for Human-Computer
Interaction: A Case Study of the Lexi-Jarvis Project

Yuan Gao

Pembroke ID: Gao1820SRP25
Supervisor: Guy Laban

Date of Submission: July 27th, 2025

Declaration

This dissertation is my own work and includes nothing which is the outcome of work
done in collaboration except as specified in the text. It is not substantially the same as
any work that has already been submitted before for any degree or other qualification
except as specified in the text. It does not exceed the agreed word limit.

Abstract

This dissertation investigates the design and implementation of a lightweight,
rule-based proactive notification system for human—computer interaction (HCI), inspired
by the context-aware assistance envisioned in JARVIS from Iron Man. The Lexi-Jarvis
project aimed to deliver automated, contextually relevant notifications based on
environmental data without explicit user input, serving as an early-stage prototype for
proactive assistance.

The system was developed as a Progressive Web App (PWA) using React and
Vite, integrated with Firebase Cloud Messaging (FCM) for push delivery, MongoDB
Atlas for multi-user token management, and external APIs for weather, AQI, UV index,
and news data. Tested over five days on macOS, Windows, and Android platforms, the
system achieved high success rates on desktop devices (95% on macOS, 92.5% on
Windows) but lower reliability on iOS (65%) due to token expiration and manual
installation requirements.

These findings confirm that lightweight, rule-based proactive systems can deliver
timely and relevant notifications while minimizing intrusiveness, aligning with
attention-centric HCI principles. However, platform-specific limitations, simplified rule
logic, and limited user testing highlight the need for improved cross-platform
optimization, adaptive notification timing, and expanded user studies. Future iterations
should incrementally integrate machine-learning models to enhance personalization and
move closer to truly context-aware, JARVIS-like proactive assistance.

1. Introduction

1.1 Background and Motivation

The evolution of human-computer interaction (HCI) has shifted from basic
command-response systems to increasingly proactive and context-aware systems that
aim to anticipate user needs. Proactive notification systems have been shown to
improve user experience by delivering timely information while reducing cognitive effort
required for manual checking (Pejovic & Musolesi, 2014). However, most commercial
assistants, such as Apple’s Siri and Amazon’s Alexa, remain fundamentally reactive,
requiring explicit user commands to operate. Even so-called “smart” notifications in
fitness or travel applications are often time-scheduled or event-triggered rather than
dynamically adapting to real-time context.

In contrast, fictional representations of artificial intelligence, such as JARVIS in
Iron Man, depict an Al capable of continuously analyzing its environment and appearing
exactly when needed—offering recommendations or performing actions without being
prompted. This vision of autonomous, context-aware Al has long inspired researchers in
HCI, as it represents the potential for technology to act as a seamless extension of
human cognition.

My motivation for this project is deeply personal. Since | first encountered
computer science, | have been fascinated by Tony Stark’s vision of integrating human
intelligence with machine intelligence. My ultimate goal is to contribute to the
development of Al systems that can actively support humans in real time. The
opportunity to work under Dr. Guy Laban, who also appreciates the imaginative
potential of science-fiction-inspired HCI, made this project particularly meaningful.
Designing even a simple prototype that can “appear” proactively when needed feels like
taking my first concrete step toward building a “mini-JARVIS.”

The Lexi-Jarvis project was developed within the context of the Cambridge
Online Summer Research Programme, where time and resources were limited, making
it crucial to prioritize lightweight and easily deployable solutions. Instead of pursuing
complex machine learning models, the focus was on creating a rule-based proactive
notification system that could reliably deliver context-aware messages to users across
multiple devices.

The system integrated Progressive Web App (PWA) technology for
cross-platform accessibility, Firebase Cloud Messaging (FCM) for push notifications,
and a MongoDB database for storing user registration data. Public APls, including
Weather, Air Quality Index (AQI) and Ultraviolet (UV) index APIs, were selected as the
primary data sources because they are widely applicable to daily life and represent an
accessible starting point for proactive notifications. The inclusion of a news API tested
the feasibility of embedding dynamic URLs in notifications, simulating real-time
information delivery beyond environmental alerts.

By exploring whether such a lightweight system can be built within a constrained
timeframe, this project seeks to contribute to ongoing discussions in HCI about the

feasibility of proactive, context-aware systems. The findings not only highlight current
technical challenges—such as token registration on iOS PWAs and occasional URL
transmission failures—but also provide insights into how future research might move
closer to achieving JARVIS-like assistance in everyday life.

1.2 Research Questions

This project seeks to address two central research questions: How can a
PWA-based system deliver API-triggered proactive notifications across multiple
devices? What technical and user experience challenges emerge when implementing
such a system within a constrained timeframe? These questions are critical for
understanding the feasibility of lightweight, API-driven proactive systems and for
identifying technical barriers to broader deployment.

1.3 Dissertation Structure Overview
This dissertation is organized into five main chapters following this introduction:

Chapter 2 (Literature Review) discusses prior research on proactive notification
systems, API-driven context-aware services, and the use of PWAs in HCI.

Chapter 3 (Methodology) describes the system architecture, data flow, API
integration, and experimental setup.

Chapter 4 (Results and Analysis) presents the outcomes of system
implementation, evaluates its performance, and highlights technical challenges.

Chapter 5 (Discussion) interprets findings in relation to existing literature,
discusses implications for future HCI development, and identifies limitations.

Chapter 6 (Conclusion) summarizes the project’s key contributions and outlines
directions for future research.

2. Literature Review

2.1 Proactive Notifications in Human-Computer Interaction

Proactive notification systems are designed to deliver timely, context-aware
information, reducing the need for users to manually retrieve data. Early HCI research
highlights their potential: McCrickard et al. (2003) developed the temporal interruption
theory, suggesting that notifications delivered at cognitive breakpoints—moments
naturally occurring between tasks—can significantly reduce disruption and improve user
receptiveness (McCrickard et al., 2003). McCrickard and Chewar (2006) further
introduced the concept of attention-centric notifications, arguing that effective systems

should provide “information that provides value to the user while respecting attention
allocation in multitasking environments” (McCrickard & Chewar, 2006).

Complementing this, Okoshi et al. (2015) demonstrated through a real-world
study that delivering notifications at detected breakpoint moments could lower cognitive
load by 46%, compared to randomly timed alerts (Okoshi et al., 2015). Another
large-scale investigation with 680,000 users showed that delaying notifications until
opportune moments resulted in 49.7% faster response times and increased user
engagement (Okoshi et al., 2017). These findings reveal the importance of timing and
user interruptibility modeling in proactive systems—an area often overlooked in simple
alert systems.

However, proactive notifications also carry risks. A diary study by Pielot and Rello
(2017) found participants disabling alerts for 24 hours reported higher productivity but
also feelings of social isolation and anxiety, illustrating the psychological trade-offs
inherent in removing digital interruptions (Pielot & Rello, 2017). Similarly, Mehrotra et al.
(2016) observed that frequent or poorly timed notifications caused notification fatigue
and reduced acceptance rates, emphasizing the need for adaptive timing strategies
(Mehrotra et al., 2016).

To address these challenges, researchers increasingly advocate for
attention-aware, learnable notification systems that adjust delivery based on user
context (Mehrotra & Musolesi, 2017). Suggested techniques include bounded
deferral—delaying non-urgent alerts until suitable moments—and filtering based on
current task compatibility.

Lexi-Jarvis’s approach aligns with this theory-driven model. By restricting
notifications to environmentally triggered events (e.g., low temperature, high UV index),
Lexi-Jarvis inherently integrates attention-timing principles and minimizes informational
noise. This minimalist strategy ensures alerts are both opportune and relevant, while
avoiding overloading users—a balanced approach that reflects key HCI ideals.

2.2 API-Driven Context-Aware Systems

Application Programming Interfaces (APIs) have become a cornerstone for
developing context-aware systems, offering seamless access to real-time environmental
and situational data. Commercial examples include Google Nest thermostats, which
automatically adjust heating patterns based on weather forecasts, and popular fitness
applications such as Strava, which integrate weather and geolocation data to
recommend optimal outdoor activities. These systems exemplify how APIs bridge
real-world conditions and digital experiences.

From an academic perspective, two critical aspects dominate the discourse on
API-driven systems. Firstly, real-time adaptation — Bellotti et al. (2008) emphasize the
importance of integrating multiple APIs to dynamically infer user context, enabling
systems to act as “smart intermediaries” that adjust to environmental and behavioral
cues (Bellotti et al., 2008). Similarly, Mehrotra & Musolesi (2017) highlight the role of

combining heterogeneous data sources to model user interruptibility and maximize
proactive system relevance. The second aspect is data reliability and privacy —
APIl-based systems rely on third-party data quality; delays, outages, or inaccurate
responses can undermine system trustworthiness. Moreover, integrating APIs that
handle sensitive information such as location or health data raises privacy and ethical
concerns (Zhang et al., 2021). Several studies advocate for privacy-by-design
principles, suggesting that context-aware systems should minimize personal data
collection whenever possible (Shin & Park, 2019).

Despite these advances, most API-driven proactive systems remain proprietary
and closed-source, which limits academic replication and customization opportunities.
The Lexi-Jarvis project deliberately diverges from this trend by adopting open-source
APIs (weather, UV index, AQI, and news) to construct a lightweight, replicable
prototype. Focusing exclusively on environmental data eliminates complex privacy
concerns, making Lexi-Jarvis particularly suitable for early-stage research and
academic validation. Moreover, Lexi-Jarvis introduces a rarely addressed feature in
academic prototypes: multi-user synchronization. By storing multiple user tokens in
MongoDB, Lexi-Jarvis supports simultaneous push notifications across diverse devices,
a capability that fills a gap in existing research, which predominantly targets single-user
interactions.

2.3 Progressive Web Apps and Multi-Device HCI

Progressive Web Apps (PWAs) have emerged as a promising solution to unify
the accessibility of web applications with the functionality of native mobile apps. PWAs
leverage service workers, manifest files, and offline caching to deliver app-like
experiences, including background synchronization and push notifications. This hybrid
approach allows developers to maintain a single codebase while reaching both desktop
and mobile users, reducing development costs and improving scalability (Panwar,
2024). Commercial deployments have demonstrated PWAs’ effectiveness in increasing
engagement. For instance, Starbucks’ PWA reportedly doubled daily active users by
providing faster loading times and offline support, enabling seamless ordering in
low-connectivity regions. Similarly, Twitter Lite, a PWA, reduced data consumption by
70% while maintaining high performance (Web.dev, 2017).

Despite these advantages, PWAs face significant platform-specific limitations,
particularly on iOS devices. Although Apple introduced PWA push notification support in
iOS 16.4, several constraints remain that affect proactive notification systems. PWAs
must be manually installed on the home screen for push services to work, which limits
accessibility for non-technical users (Sorrel, 2023). iOS aggressively suspends
background processes, causing push notification tokens to expire if the PWA is not
frequently opened, thereby reducing the system’s proactive nature. Moreover, Safari
restricts long-running service workers, which undermines the reliability of real-time
notifications. These issues create a fragmented user experience compared to Android,
where PWAs enjoy native-like push reliability. Academic analyses, such as
Bigrn-Hansen et al. (2017), emphasize that such inconsistent cross-platform

performance remains a major barrier to PWAs becoming universal platforms for
proactive notification delivery (Bigrn-Hansen et al., 2017).

The Lexi-Jarvis project directly explored these cross-platform challenges. Testing
on macOS, Android, and iOS confirmed existing findings: push notifications were highly
reliable on macOS and Windows but inconsistent on iOS due to token expiration and
manual installation requirements. These observations underscore the need for
platform-specific optimization in future proactive notification systems.

2.4 Five HCI Challenges in Notification Design

Designing effective notification systems in HCI requires balancing information
delivery with minimal cognitive disruption. | identified five core challenges for the
Lexi-Jarvis notification design, which remain highly relevant in the era of proactive
systems:

1. Attention Centrality — Notifications must respect the user’s primary task, aligning
with attention flow rather than interrupting it arbitrarily. Studies in interruption
science confirm that attention-compatible notifications significantly reduce stress
and task-switching overhead (Igbal & Bailey, 2008).

2. Timing and Cognitive Breakpoints — Well-timed alerts should appear during
“natural pauses” or cognitive breakpoints. Okoshi et al. demonstrated that
delivering smartphone notifications at these breakpoints lowered cognitive load
by 46% compared to randomly timed alerts (Okoshi et al., 2015).

3. Information Capacity — Notifications should provide concise, high-value content.
Overly detailed or frequent alerts can overwhelm users, leading to notification
fatigue (Pielot & Rello, 2015).

4. User Control and Customization — Users should have the ability to adjust
notification frequency and content relevance. Mehrotra et al. found that allowing
users to defer or silence notifications improved acceptance rates by 32%
(Mehrotra et al., 2016).

5. Transparency and Explanation — Systems should make their decision-making
process clear, explaining why a notification was triggered. Transparency
increases trust and helps users feel in control of their experience (Shin & Park,
2019).

The Lexi-Jarvis project partially adheres to these principles. Its rule-based,
environment-triggered notifications inherently address attention centrality, timing, and
information capacity, ensuring relevance and minimizing intrusion. However, user
control and transparency were deliberately simplified in this early prototype to prioritize
technical feasibility and cross-platform testing. Future iterations should incorporate
adjustable settings and transparent trigger explanations to fully align with these
established HCI recommendations.

2.5 Research Gap

Despite growing interest in proactive notification systems, several important gaps
remain in the existing literature. Firstly, most current implementations are proprietary
and tightly integrated with complex Al models, which restricts reproducibility and limits
opportunities for academic experimentation. Secondly, research has also primarily
focused on single-user prototypes, with little evidence of systems capable of
synchronizing notifications across heterogeneous devices. In addition, while
machine-learning-driven predictive systems dominate recent studies, simpler rule-based
models remain underexplored despite offering practical advantages for early-stage
research and rapid validation.

By addressing three gaps mentioned above, Lexi-Jarvis contributes to the
academic understanding of practical, replicable proactive notification systems. It also
provides a foundation for future research integrating machine learning to achieve
adaptive timing, personalization, and improved cross-platform reliability.

3. Methodology

3.1 Research Design

The Lexi-Jarvis research project adopted an experimental, prototype-based
research design, suitable for early-stage exploration of proactive notification systems.
This choice reflects the goal of validating feasibility rather than achieving commercial
scalability or deploying advanced predictive models.

The research followed three core objectives:

e Objective 1: Build a cross-platform proactive notification system using
Progressive Web App technology and Firebase Cloud Messaging.

e Objective 2: Integrate real-time environmental APIs for context-aware triggers.

e Objective 3: Test multi-user, multi-device synchronization using a centralized
MongoDB database.

The following sections detail the technical implementation, data flow, and
evaluation procedures.

3.2 System Architecture

Lexi-Jarvis adopted a modular client—server architecture (Figure 1), aligning with
best practices in scalable HCI systems (Panwar, 2024):

e Front-end (Client)
Implemented as a React + Vite PWA (Figure 2), the front-end delivered
cross-platform compatibility (macOS, Android, iOS). Service workers managed
offline caching, background message handling, and notification display.

e Back-end (Server)
A lightweight Node.js server executed API polling and rule evaluation. Firebase
Cloud Messaging (FCM) was chosen for its reliability and ease of integration with
PWAs (Google Developers, 2022).

e Database Layer
MongoDB Atlas stored user tokens and metadata, enabling multi-user
synchronization. Each token was associated with a unique device ID, allowing
simultaneous notifications across different operating systems.

e External APIs
Open-source APIs were selected for practical relevance and ethical safety:

o OpenWeatherMap API — real-time temperature data and air pollution
levels;

o World UV Index APl — UV exposure levels;
o NewsAPI — real-time news headlines and URLs.

This modularity allowed future extension—for example, swapping rule-based triggers
with machine-learning models.

[Figure 1: Lexi System Architecture Diagram] [Figure 2: Lexi-Jarvis iOS PWA]

T
e y e

External APIs

» OpenWeather API W
« World UV Index API L
* NewsAPI|

!

Server

Node.js (Polling+Rules)
Firebase Cloud Messaging

I

Database

MongoDB Atlas
(Tokens)

Front-end

React + Vite PWA
Service Workers

Figure 1: Lexi System Architecture Diagram

3.3 Data Flow and API Integration

The system’s data flow proceeded through five sequential stages (Figure 3).
First, the Node.js server periodically retrieved environmental and contextual data from
the OpenWeatherMap, World UV Index, and News APIs at 30-minute intervals using
node-cron module. This interval was chosen as a compromise—frequent enough to
provide near-real-time alerts, yet infrequent enough to reduce server strain and avoid
user annoyance, consistent with attention-centric notification principles.

Second, the retrieved data was evaluated against predefined rule-based
conditions. For example, when the air pollution index is above 100, Lexi-Jarvis shall say
“Dusty air! Wear a mask outside”, or when the temperature fell below 10°C, the system
generated the message “It's cold today, wear a jacket,” while a UV index exceeding 7
triggered the alert “High UV alert: consider wearing sunscreen.” If headline news is
found, Lexi-Jarvis inputs news’ category.

Third, MongoDB Atlas was queried to retrieve all registered user tokens,
ensuring that notifications could be synchronized across multiple devices.

Fourth, Firebase Cloud Messaging dispatched the notifications, embedding either
plain text or clickable URLs for news updates.

Finally, the Progressive Web App’s service worker intercepted and displayed the
notifications on the client side, even when the application was inactive—except on iOS,
where token expiration sometimes limited delivery.

[Figure 3: Data Flow of API-triggered Notification System]

s A)

Trigger Evaluation
It’s cold today,
wear a jacket.

Notification

if temperature <10°C
MongoDB Dispatch

API

if UV index >7
N J
&)
Data Retrieval Tiiager
Evaluation Mongobb

3.4 Implementation Details

3.4.1 Front-end Development

The front-end of the Lexi-Jarvis notification system was developed as a
Progressive Web App (PWA) using React, chosen for its component-based architecture,
which supports code reusability and ensures a consistent user interface across devices.
The application was built and bundled with Vite, a modern build tool that provides
significantly faster hot-reloading and build times compared to traditional tools such as
Webpack, which was particularly advantageous for rapid prototyping and iterative
testing during the short research period.

To enable PWA installation and improve the app’s accessibility, a manifest.json
file was configured, specifying essential metadata such as the application name, icons,
and theme color. This configuration allowed the Lexi-Jarvis to be installed directly onto
desktops and mobile devices, giving it an app-like appearance and user experience.
Service workers were implemented to manage background processes, including
intercepting push events and caching resources. This enabled the app to function in
offline or low-connectivity scenarios and display notifications even when inactive, a
critical feature for maintaining the “proactive” nature of the system.

However, platform-specific limitations were observed, particularly on iOS devices.
According to Apple’s PWA implementation guidelines, Safari required users to manually
add the PWA to their home screen before push notifications could function properly,
reducing accessibility for less technical users. Additionally, iOS aggressively suspended
background processes to preserve battery life, which caused FCM tokens to expire if
the PWA was not opened for extended periods. This behavior limited the reliability of
proactive notifications on iOS compared to macOS and Windows, where background
service workers remained active for longer periods.

3.4.2 Back-end and Database

The back-end of the Lexi-Jarvis system was designed to ensure scalability,
reliability, and efficient real-time processing rather than simply acting as a passive data
relay. It was implemented using Node.js, selected for its event-driven, non-blocking
architecture, which is highly suitable for applications requiring frequent API polling and
asynchronous message handling. This design allowed the system to handle multiple
API requests concurrently while maintaining low latency, an essential requirement for
proactive notifications. Furthermore, FCM was integrated via the Firebase Admin SDK
as the core push delivery service. FCM was chosen for its proven compatibility with
PWAs and its ability to manage large-scale device messaging with minimal manual
configuration.

The database layer was built on MongoDB Atlas, a cloud-hosted NoSQL solution
chosen for its document-based data structure and seamless integration with
JavaScript-based back-end frameworks. Instead of storing user-related contextual data,
which could raise privacy concerns, the database only maintained essential information,
including device tokens, user identifiers, and last active timestamps (Figure 4). This
minimalist design reduced data privacy risks while ensuring multi-user synchronization
by enabling the system to dynamically update or remove expired tokens. Such a
structure not only supported the current small-scale testing environment but also

10

provided a clear pathway for future scalability, as new users or devices could be added
without major architectural changes.

Unlike the data flow described in Section 3.3, which focuses on sequential
interactions between components, the emphasis here lies in the technical rationale for
choosing each tool and how they collectively contributed to creating a lightweight yet
extensible architecture. However, some limitations were encountered during
implementation. The system operated exclusively in a local development environment
due to deployment challenges on Render, which experienced compatibility issues with
the Firebase Admin SDK. As a result, the system was tested only under controlled
conditions, preventing evaluation under higher traffic or real-world scalability scenarios.
Addressing these deployment constraints is a crucial step for future iterations of the
Lexi-Jarvis project, especially if it is to be tested with a larger user base.

[Figure 4: MongoDB Token Entries]

Data Services Charts % & A

+ Create Database

lexi_db.userpushes

Q STORAGE SIZE: 36KB LOGICAL DATA SIZE: 214B TOTAL DOCUMENTS: 1 NDEXES TOTAL SIZE: 40KB

Find
lexi_db

Generate queries from natural language in Compass® INSERT DOCUMENT
agents
conversations Filter® f | Options »
experiments
forms 1-10F1

metadata_conversatio...
_id: ObjectId('687b05578dc653fcaddeeclb’)
userpushes userId : "test-user-001"

_v: 0
users pushInfo : "cHrEnMHmbyiVvzeO7RA_zI:APA91bHURtWZURTNTIMIXkNgSImuhJPFKq_DdcKK8vXs1I_.."

sample_mflix

3.5 Experimental Setup

The notification experiment was tested over a five-day period on three different
platforms to evaluate its cross-device performance and reliability. Testing was
conducted on macOS 14 (MacBook Pro, Chrome PWA), iPhone 15 running iOS 17.3
(Safari PWA), and an Android smartphone (Android 14, Chrome PWA). These platforms
were selected to represent the major operating systems relevant to PWA deployment
and to reflect the project’s emphasis on cross-platform feasibility. The devices alternated
between active and idle states to simulate realistic user conditions, ensuring that the
system’s performance could be evaluated under both foreground and background
scenarios. On mobile devices, particular attention was paid to how push notifications
behaved when the app was inactive for extended periods, as this scenario is critical for
proactive notification systems.

11

The evaluation focused on three key metrics: success rate, latency, and user
feedback. The success rate was calculated as the ratio of successfully delivered
notifications to the total number of attempted pushes. Latency was defined as the time
elapsed between the fulfillment of a trigger condition and the appearance of the
corresponding notification on the client device. User feedback, collected from four
testers, offered qualitative insights into the perceived relevance and intrusiveness of the
notifications. This combination of quantitative and qualitative measures allowed for a
comprehensive assessment of both technical performance and user experience, laying
the groundwork for identifying areas for improvement in future iterations of the
Lexi-Jarvis notification system.

3.6 Ethical Considerations

The Lexi-Jarvis project adhered to privacy-by-design principles:

e No personal or location data was processed;
e Tokens were anonymized and stored solely for research purposes;
e Participants were fully informed of data usage.

This ensured compliance with ethical norms for early-stage HCI experimentation.

4. Results and Analysis
4.1 Functional Achievements

The Lexi-Jarvis system successfully achieved its primary objective of delivering
API-triggered proactive notifications across multiple devices, demonstrating the
feasibility of using rule-based APIs for lightweight proactive alert systems (Figure 5).
During the five-day testing period, environmental triggers such as temperature and UV
index operated reliably on macOS and Android, consistently producing context-relevant
notifications. Weather alerts, for instance, were automatically triggered when
temperatures fell below 10°C, displaying messages such as “It's cold today, wear a
jacket” or “Only 14.2°C, stay warm!”. Similarly, UV index monitoring accurately
generated alerts when conditions were classified as high (above 7.0), prompting
recommendations such as wearing hats, sunglasses, and sunscreen (Figure 6).

The system also integrated the transmission of dynamic content with embedded
URLs, which performed well on desktop platforms, allowing users to click through
notifications to external news and weather sources. These functional achievements
confirm that environmentally triggered, rule-based notifications can provide timely and
meaningful information in a cross-platform setting, offering a viable foundation for future
improvements and larger-scale deployment.

12

[Figure 5: Lexi-Jarvis Console.log as Notification Sent]

‘m vite.svg Server started on http://localhost:5050
Successfully connected to MongoDB

MG [News Notifier] Checking News...
v app [Weather Notifier] Checking Weather...
3 [Weather Notifier] Temp: 14.2°C, Weather: overcast clouds
% App.tsx [Weather Notifier] Broadcasting to 1 users
styles.css @ Detected FCM token
@ [FCM] Sending with URL: https://openweathermap.org/city
> assets [News Notifier] No headlines found for topic: seattle
[News Notifier] No headlines found for topic: crime
? GRS [News Notifier] No headlines found for topic: politics
> contexts [Air Notifier] Current AQI: 30
> DAL [Air Notifier] Good Air Quality
[FCM] Sent to cHrEnMHmby...: projects/lexi-jarvis/messages/4b95791e-2f61-4c5f-93b7-d16c3dc47650
> hooks [Weather Notifier] Cold Warning @
[News Notifier] Broadcasting to 1 users
> models @ Detected FCM token
S erraanc @ [FM] Sending with URL: https://news.google.com/search?q=Thailand%20and%20Cambodia%2@Exchange%20F ire%20in%20Deadly%20Borders20Clash%20-%20
JUTLINE The%20Wall%20St reet%20Journal
[UV Notifier] Today Max UV Index: 7.29
IMELINE [FCM] Sent to cHrEnMHmby...: projects/lexi-jarvis/messages/62a82a95-daa8-4948-alac-0841640f636b

[Figure 6: Lexi-Jarvis Notification on macOS]

T B0 #EE SAURR BELTE R ®) R Y T Q S ® 7A2HARE LF21
B Lexiwe x | B untitec x | B &R x | @ Cluster X § Lexi-C x | B Jarvic. . sale Chrome Py x
= UV Alert WM

lexi-jarvis.web.app
UV Index is 7.3 (high). Wear a hat, g‘?
sunglasses and sunscream!

®

@ AP Classroom m Home - MyUW A9 Student : Calendar

Z_ Al News: Thailand and Cambodi... 7
lexi-jarvis.web.app

Source: The Wall Street Journal. & &
EREZHE

®

% Weather Alert 180T
lexi-jarvis.web.app
MASNARE 14.2°C, RERIE!

®

~_ Al News: Stock futures move hi... 3%zl
lexi-jarvis.web.app
Source: CNBC. REEEEZ#1E &

Google

Jle RIER, SEAMIL

®

(=

®

% Weather Alert 3KHl
lexi-jarvis.web.app

MEIERE 16.3°C, FERIE!

» © e e o
Student AP Classroom CodeHS College Board EEER.. L — TR 7

25 14°

SRFAR ¢

ARBHEBL S
= 23° RIE13°

4.2 System Performance

The system’s performance was assessed over five consecutive days, during
which 120 trigger events were executed across macOS, Windows, and iOS platforms.

The overall success rate demonstrated that the Lexi-Jarvis system was reliable
on desktop platforms, with 38 of 40 notifications delivered on macOS (95%) and 37 of

13

40 delivered on Android (92.5%). In contrast, performance on iOS was significantly
lower, with only 26 of 40 notifications successfully received (65%). Most failures on iOS
were attributed to token expiration caused by Safari’s aggressive suspension of
background processes and the requirement for manual home-screen installation, which
sometimes led to users forgetting to refresh the app.

Latency results further highlighted cross-platform differences. On macOS, the
average latency between trigger detection and notification display was 2.8 seconds
(range 2.1-3.6 seconds), while Windows averaged 3.1 seconds (range 2.5-4.0
seconds). iOS exhibited the highest latency, averaging 5.4 seconds and occasionally
exceeding 30 seconds. This delay can be explained by the need to re-establish expired
tokens and limitations in iOS service worker functionality. Despite these inconsistencies,
latency on all platforms remained within acceptable limits for user-perceived “real-time”
performance, reinforcing the technical feasibility of rule-based proactive notifications
under typical usage conditions.

4.3 User Feedback

Qualitative feedback was collected from four testers to complement the
quantitative performance metrics. All users appreciated the timeliness of weather and
UV alert, reporting that they became more aware of environmental changes such as
sudden temperature drops or high UV exposure. The notifications’ simplicity—short,
clear, and context-specific messages—was considered non-intrusive and consistent
with best practices in attention-centric HCI design. However, one tester expressed
dissatisfaction with iOS’s requirement to keep the PWA “active” to maintain token
validity, stating, “It doesn’t feel truly proactive if | need to reopen the app manually.”
Additionally, while environmental notifications were well-received, news alerts were
sometimes perceived as irrelevant, highlighting the need for customizable content filters
in future iterations.

4.4 Technical Challenges

Several challenges emerged during testing:

1. iOS Token Persistence
iOS aggressively suspends background processes, causing FCM tokens
to expire if the PWA is not opened frequently. Users had to manually re-open the
app to refresh tokens, reducing the proactive nature of the system.

2. Manual Installation Requirement
Safari required explicit home-screen installation for push notifications to
function, reducing accessibility for less technical users.

14

3. Inconsistent URL Handling
News notifications occasionally failed to embed clickable URLs,
particularly on iOS, likely due to service worker caching inconsistencies.

4. Render Server Deployment Failure
Attempts to deploy the Node.js back-end to Render failed due to Firebase
Admin SDK version conflicts, limiting testing to a local environment. This
constrained the ability to evaluate the system under larger-scale, real-world
conditions.

4.5 Interpretation of Results

The findings confirm that lightweight, rule-based proactive notifications can be
effectively implemented across desktop and mobile devices, supporting previous HCI
research on context-aware and attention-centric systems. The high success rates on
macOS and Android demonstrate that even without machine learning, environmentally
triggered rules can deliver timely and relevant alerts. These results align with
McCrickard et al.’s (2003) principle that notifications should only appear when they
provide clear value and respect users’ attention flow. The positive user feedback,
particularly regarding the low frequency and concise messaging, suggests that
rule-based timing can reduce the cognitive burden typically associated with proactive
systems. Furthermore, Lexi-Jarvis’s reliance on environmental triggers reflects Okoshi
et al.’s (2015) findings that aligning notifications with user context decreases perceived
intrusiveness.

However, the inconsistencies on iOS reveal significant platform-dependent
constraints, echoing broader concerns in the PWA literature about cross-platform
reliability. These results indicate that while rule-based systems are feasible as
transitional prototypes, improvements in token persistence, installation accessibility, and
content personalization will be necessary before such systems can achieve fully
seamless, JARVIS-like proactive assistance.

5. Discussion
5.1 Contribution to Existing Literature and Prior Research

The Lexi-Jarvis project contributes to several areas identified as research gaps in
Section 2.5, while also reinforcing and extending findings from prior studies. First, it
demonstrates that a functional, replicable proactive notification system can be
developed using open-source APIs and publicly available tools, contrasting sharply with
proprietary ecosystems such as Google Assistant and Alexa, mentioned by Mehrotra
and Musolesi (2017), which remain largely inaccessible for academic experimentation.

15

By storing multiple user tokens in MongoDB and synchronizing notifications across
devices, Lexi-Jarvis also addresses the lack of academic prototypes focusing on
multi-user, cross-platform delivery. Although its success rate on iOS was relatively low,
the architecture proves conceptually scalable and adaptable for larger user bases.

Furthermore, Lexi-Jarvis aligns with Bellotti et al. 's (2008) argument that early
context-aware systems, such as Magitti, can serve as effective transitional prototypes
toward fully intelligent, Al-driven assistants. Its performance shows that incremental
enhancements—such as expanding rule sets or integrating machine-learning
models—offer a practical and resource-efficient path forward for early-stage research.

The results are consistent with findings from previous studies on cross-platform
inconsistencies in PWAs. Similar to observations by Panwar (2024), which highlight
iOS'’s restrictive handling of service workers, Lexi-Jarvis’s 65% success rate on iOS
underscores the challenge of achieving uniform performance across heterogeneous
platforms. User feedback also echoes established theories in interruption science.
Testers found timely weather and UV alerts valuable, whereas news notifications were
sometimes perceived as irrelevant, confirming Mehrotra et al.’s (2016) warning that
reduced content relevance increases the risk of notification fatigue. These consistencies
indicate that Lexi-Jarvis is not only technically feasible but also aligned with existing
theoretical frameworks, further validating its potential as a research tool.

5.2 Research Implications

The implications of this research extend beyond the scope of this prototype.
From a human—computer interaction perspective, Lexi-Jarvis demonstrates how
attention-aware design principles can be implemented with minimal computational
resources, offering a baseline for future studies exploring proactive user assistance. In
practical terms, similar lightweight systems could be adapted for applications such as
healthcare alerts, disaster early-warning systems, or environmental monitoring,
particularly in resource-constrained settings where deploying full-scale Al models is
impractical. Finally, Lexi-Jdarvis provides a foundation for bridging toward more
advanced Al-driven systems. By incrementally integrating adaptive machine-learning
algorithms to predict optimal notification timing and personalize content, future iterations
could move closer to realizing the “mini-JARVIS” vision described in Chapter 1, where
proactive assistants appear exactly when needed.

5.3 Limitations and Future Work

5.3.1 Limitations

Despite its contributions, Lexi-Jarvis faced several limitations:

16

. i0OS Performance Issues — Token expiration and manual installation requirements

significantly reduced reliability, limiting its feasibility as a universal cross-platform
solution.

Limited User Testing — The experiment involved only four testers, restricting the
generalizability of user feedback and making it difficult to draw statistically
significant conclusions.

Local Deployment — Server deployment failures on Render prevented
large-scale, real-world testing, constraining the evaluation to controlled
conditions.

. Simplified Rules — Lexi-Jarvis used only four basic triggers; more complex

scenarios, such as combining multiple APls for richer context inference, were not
explored.

5.4.2 Future work

Future iterations of Lexi-Jarvis could address these limitations through:

Improved Cross-Platform Support — Investigating native app wrappers (e.g.,
Capacitor or React Native) or optimizing service workers for iOS to achieve more
stable token persistence.

Adaptive Notification Timing — Incorporating machine-learning models to learn
user preferences and predict ideal notification moments, following methods such
as those proposed by Mehrotra and Musolesi (2017).

Expanded User Studies — Deploying the server and testing with larger, more
diverse participant groups to evaluate user experience and acceptance
statistically.

Enhanced Content Personalization — Allowing users to customize notification
categories to reduce notification fatigue and improve perceived relevance
(Mehrotra et al., 2016).

6. Conclusion

This dissertation explored the feasibility of developing a lightweight, rule-based

proactive notification system to deliver API-triggered alerts across multiple devices, with
the broader vision of moving toward context-aware Al assistants inspired by JARVIS in
Iron Man. The Lexi-Jarvis project was designed as a proof-of-concept notification
prototype, emphasizing technical feasibility, replicability, and multi-user scalability.

The project successfully implemented a Progressive Web App integrated with

Firebase Cloud Messaging, MongoDB, and open-source APls, including weather, UV
index, AQI, and news data sources. The system achieved high notification success

17

rates on macOS (95%) and Windows (92.5%), validating that even simple, rule-based
triggers can reliably provide timely and relevant notifications. These results align with
established principles in HCI research, which emphasize that notifications must deliver
clear value while respecting user attention flow. User feedback further supported this, as
testers described the weather and UV alerts as timely and useful, and the minimalist
messaging as non-intrusive.

In addition to confirming the feasibility of this approach, Lexi-Jarvis contributes to
the academic understanding of proactive notification systems in several ways. First, it
demonstrates that an open-source, replicable prototype can serve as a valuable
academic tool in a field dominated by proprietary, closed-source systems such as
Google Assistant and Alexa. Second, it introduces multi-user, cross-platform
functionality, which is rarely addressed in academic prototypes, by enabling
simultaneous notifications through a centralized token management system in
MongoDB. Third, it highlights the viability of rule-based systems as transitional
prototypes, supporting arguments in prior literature that such lightweight approaches
can act as a practical stepping stone before adopting complex machine-learning
models.

However, several technical and methodological challenges emerged during
testing. iOS presented significant limitations, including token expiration, manual
home-screen installation requirements, and inconsistent URL handling, which reduced
its proactive nature. Deployment constraints also restricted the system to a local testing
environment, preventing large-scale real-world evaluation. Furthermore, the system’s
reliance on a small set of environmental rules limited its ability to deliver more
personalized or adaptive notifications, and user testing was confined to a very small
sample size.

These findings nevertheless offer clear directions for future work. Enhancing
cross-platform reliability—potentially through native wrappers or hybrid
frameworks—would be essential for achieving consistent multi-device performance.
Integrating adaptive machine-learning algorithms to optimize notification timing and
personalize content could significantly increase user acceptance and reduce notification
fatigue. Expanding testing to larger, more diverse user groups would allow for more
robust evaluation of user experience, while deploying the system on cloud servers
would test its scalability in real-world contexts.

Overall, the Lexi-Jarvis project demonstrates that even within limited time and
resources, a lightweight, rule-based proactive notification system can make meaningful
progress toward more autonomous, context-aware HCI systems. By validating the
technical feasibility and identifying key challenges, this research provides a foundation
for future developments in proactive notification design. More importantly, it represents
an incremental but concrete step toward realizing the vision of an intelligent assistant
that appears exactly when needed—a small but significant stride toward the
long-envisioned “mini-JARVIS.”

18

References

Bellotti, Victoria, Bo Begole, Ed H. Chi, Nicolas Ducheneaut, Ji Fang, Ellen Isaacs,
Tracy King, et al. “Activity-Based Serendipitous Recommendations with the
MAGITTI Mobile Leisure Guide.” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, April 6, 2008, 1157-66.
https://doi.org/10.1145/1357054.1357237.

Bigrn-Hansen, Andreas, Tim A. Majchrzak, and Tor-Morten Grgnli. “Progressive
Web Apps: The Possible Web-Native Unifier for Mobile Development.”
Proceedings of the 13th International Conference on Web Information Systems
and Technologies, 2017. https://doi.org/10.5220/0006353703440351.

Igbal, Shamsi T, and Brian P Bailey. Effects of intelligent notification management
on users and their tasks , April 5, 2008.
https://dl.acm.org/doi/10.1145/1357054.1357070.

McCrickard, D. Scott, C. M. Chewar, Jacob P. Somervell, and Ali Ndiwalana. “A
Model for Notification Systems Evaluation—Assessing User Goals for Multitasking
Activity.” ACM Transactions on Computer-Human Interaction 10, no. 4 (December
2003): 312-38. https://doi.org/10.1145/966930.966933.

McCrickard, D Scott, and Christa M Chewar. “Designing Attention-Centric
Notification Systems: Five HCI Challenges.” Cognitive Systems, August 15, 2006,
77-100. https://doi.org/10.4324/9781410617088-10.

Mehrotra, Abhinav, and Mirco Musolesi. Intelligent Notification Systems: A Survey
of the State of the Art and Research Challenges, 2017 .
https://doi.org/10.48550/arXiv.1711.10171 .

Mehrotra, Abhinav, Veljko Pejovic, Jo Vermeulen, Robert Hendley, and Mirco
Musolesi. “My Phone and Me.” Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, May 7, 2016, 1021-32.
https://doi.org/10.1145/2858036.2858566.

Okoshi, Tadashi, Julian Ramos, Hiroki Nozaki, Jin Nakazawa, Anind K. Dey, and
Hideyuki Tokuda. “Attelia: Reducing User’s Cognitive Load Due to Interruptive
Notifications on Smart Phones.” 2015 IEEE International Conference on Pervasive
Computing and Communications (PerCom), March 2015, 96—-104.
https://doi.org/10.1109/percom.2015.7146515.

Okoshi, Tadashi, Kota Tsubouchi, Masaya Taji, Takanori Ichikawa, and Hideyuki
Tokuda. “Attention and Engagement-Awareness in the Wild: A Large-Scale Study
with Adaptive Notifications.” 2017 IEEE International Conference on Pervasive
Computing and Communications (PerCom), March 2017, 100-110.
https://doi.org/10.1109/percom.2017.7917856.

19

Panwar, Vijay. “Leveraging Progressive Web Apps (PWAs) for Enhanced User
Experience and Performance: A Comprehensive Analysis.” International Journal of
Management IT and Engineering 14 (April 4, 2024). https://doi.org/ISSN:
2249-0558.

Pejovic, Veljko, and Mirco Musolesi. “InterruptMe.” Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
September 13, 2014, 897-908. https://doi.org/10.1145/2632048.2632062.

Pielot, Martin, and Luz Rello. “Productive, Anxious, Lonely.” Proceedings of the
19th International Conference on Human-Computer Interaction with Mobile
Devices and Services, September 4, 2017, 1-11.
https://doi.org/10.1145/3098279.3098526.

Pielot, Martin, and Luz Rello. “The Do Not Disturb Challenge.” Proceedings of the
33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems, April 18, 2015, 1761-66.
https://doi.org/10.1145/2702613.2732704.

Shin, Donghee, and Yong Jin Park. “Role of Fairness, Accountability, and
Transparency in Algorithmic Affordance.” Computers in Human Behavior 98
(September 2019): 277-84. https://doi.org/10.1016/j.chb.2019.04.019.

Sorrel, Charlie. “Notifications Finally Make iPhone and iPad Web Apps Worth
Using.” Lifewire, February 22, 2023.
https://www.lifewire.com/natifications-finally-make-iphone-and-ipad-web-apps-wort
h-using-7112381.

“Twitter Lite PWA Significantly Increases Engagement and Reduces Data Usage :
Web.Dev.” web.dev, 2017. https://web.dev/case-studies/twitter.

Zhang, Mengyuan, Lei Yang, Shibo He, Ming Li, and Junshan Zhang.
“Privacy-Preserving Data Aggregation for Mobile Crowdsensing with Externality:
An Auction Approach.” IEEE/ACM Transactions on Networking 29, no. 3 (June
2021): 1046-59. https://doi.org/10.1109/tnet.2021.3056490.

20

Appendices

Appendix A: Key Code Snippets (Notification Trigger Function)

Lexi > server > src > services > TS weatherNotifier.ts > @ checkWeatherAndNotify

50
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

async function checkAirQualityAndNotify() {

const agi = await weatherService.getCurrentAirQuality('Seattle');
console.log(" [Air Notifier] Current AQI: ${agil}’);

if (aqi >= 100) {
await broadcastWeatherNotification(
"€ Air Quality Alert",
‘Current AQI: ${aqi} is unhealthy, wear a mask!",
"https://www.airnow.gov/"

DE
console. log('[Air Notifier] Air Quality Sent @');
} else {
| console.log(' [Air Notifier] Good Air Quality @');
}
} catch (error) {
| console.error('[Air Notifier] Fetching aqi error:', error.message);
}
}

// @ EBEEILHEH

async function checkUVAndNotify() {

try {

const uvIndex = await weatherService.getUVIndex('Seattle');
console.log(" [UV Notifier] Today Max UV Index: ${uvIndex}');

if (uvIndex >= 6) {
const level =
uvIndex >= 11

? 'extreme'

: uvIndex >= 8

? 'very high'
‘high';

await broadcastWeatherNotification(
"@ UV Alert",
‘UV Index is ${uvIndex.toFixed(1)} (${level}). Wear a hat, sunglasses and sunscream!’,
"https://www.epa.gov/sunsafety/uv-index-1"

21

Lexi > server > src > services > TS weatherService.ts > ...

1 import axios from 'axios';
2 import-dotenv-from- 'dotenv';
3
4 dotenv.config();
5
6 const WEATHER_API_KEY = process.env.0PENWEATHER_API_KEY;
7
8 if (!WEATHER_API_KEY) {
9 | throw new Error('Missing OPENWEATHER_API_KEY in environment variables.');
10 H
11
12 // il URL
13 const WEATHER_BASE_URL = 'https://api.openweathermap.org/data/2.5/weather";
14 const AIR_POLLUTION_URL = 'https://api.openweathermap.org/data/2.5/air_pollution';
15 const GEO_URL = 'https://api.openweathermap.org/geo/1.@/direct’';
16
17 export const weatherService = {
18 V=S
19 * RENHAXSIES
20 * @param city HBEFHSH, A4 Seattle
21 * @returns { weather: string, temp: number }
22 */
23 async getCurrentWeather(city = 'Seattle') {
24 const res = await axios.get(WEATHER_BASE_URL, {
25 params: {
26 g: city,
27 appid: WEATHER_API_KEY,
28 units: ‘'metric', // BEE
29 },
30 });
31
32 const weather = res.data.weather[@].description;
33 const temp = res.data.main.temp;
34
35 return { weather, temp };
36 b
37

22

Appendix B: Key Code Snippets (News Trigger and URL Transmission)

const userPushSchema = new mongoose.Schema({
userId: String,
pushInfo: mongoose.Schema.Types.Mixed,

13
const UserPush = mongoDbProvider.getModel('UserPush', userPushSchema);

console. log{' [News Notifier] Service Loading (4');

/! @ T EREE AL B

async function broadcastNewsNotification(title: string, body: string, url: string) {
const users = await UserPush.find({});

console. log(" [News Notifier] Broadcasting to ${users.length} users’);

for (const user of users) {
await sendNotification(user.pushInfo, title, body, url);
console. log(" [News Notifier] EE Sent to ${user.userId}: ${title}’);
}
}

/! & ERREFIEIERE

export async function sendNewsNotice(topic: string = 'seattle') {
try {

const headlines = await newsService.getTopHeadlines(topic);

if (headlines.length === 0) {
console.log(" [News Notifier] No headlines found for topic: ${topicl}’);
return;

}

// C R#EEE—FHE (FE—)

const firstHeadline = headlines[0];

const [titlePart, sourcePart] = firstHeadline.replace(/~e /, '').split('(');
const newsTitle = titlePart.trim();

const source = sourcePart?.replace(')', '').trim() || topic;

// @ FnEfkEERE (FEH Google News HEZEZFneR)
const newsUrl = “https://news.google.com/search?q=${encodeURIComponent (newsTitle)}";

23

Lexi > client > public > Js firebase-messaging-sw.js > @ self.addEventListener('notificationclick') callback

41
59
62
63
64
65
66
67
68
69
70
71
72
73
74
73
76
77
78
79
80

A

AR

self.addEventListener('push', function(event) {
const options = {
badge: data.badge || '/lexi_logo.png',
data: {}
Y

if (url) {
options.data.url = url;
console. log("' [Push Debug] Parsed push URL:', url);
} else {
| console.log(' [Push Debug] 4 No URL provided, will not open any page on click');
}

event.waitUntil(self.registration.showNotification(title, options));
H;

self.addEventListener('notificationclick', function(event) @
console.log(' [Click Debug] Notification clicked, data:', event.notification.data);
event.notification.close();

const targetUrl = event.notification.data?.url;

if (!targeturl) {
console.log(' [Click Debug] 4 No URL provided, nothing to open');
return;

}

console.log(' [Click Debug] @ Opening URL:', targetUrl);

event.waitUntil(

clients.matchAll({ type: "window", includeUncontrolled: true }).then(function(clientList) {
for (let client of clientList) {

if (client.url === targetUrl && 'focus' in client) {
console.log(' [Click Debugl Focusing existing tab for URL:', targetUrl);
return client.focus();

}

}

if (clients.openWindow) {
console. log(' [Click Debug] Opening new window for URL:', targetUrl);

return clients.openWindow(targetUrl);

24

	Proactive Notification Systems for Human-Computer Interaction: A Case Study of the Lexi-Jarvis Project
	Declaration
	Abstract
	1. Introduction
	1.1 Background and Motivation
	1.2 Research Questions
	1.3 Dissertation Structure Overview

	2. Literature Review
	2.1 Proactive Notifications in Human-Computer Interaction
	2.2 API-Driven Context-Aware Systems
	2.3 Progressive Web Apps and Multi-Device HCI
	2.4 Five HCI Challenges in Notification Design
	2.5 Research Gap
	Despite growing interest in proactive notification systems, several important gaps remain in the existing literature. Firstly, most current implementations are proprietary and tightly integrated with complex AI models, which restricts reproducibility and limits opportunities for academic experimentation. Secondly, research has also primarily focused on single-user prototypes, with little evidence of systems capable of synchronizing notifications across heterogeneous devices. In addition, while machine-learning-driven predictive systems dominate recent studies, simpler rule-based models remain underexplored despite offering practical advantages for early-stage research and rapid validation.

	3. Methodology
	3.1 Research Design
	3.2 System Architecture
	3.3 Data Flow and API Integration
	3.4 Implementation Details
	3.4.1 Front-end Development
	3.4.2 Back-end and Database

	3.5 Experimental Setup
	3.6 Ethical Considerations

	4. Results and Analysis
	4.1 Functional Achievements
	4.2 System Performance
	4.3 User Feedback
	4.4 Technical Challenges
	4.5 Interpretation of Results
	The findings confirm that lightweight, rule-based proactive notifications can be effectively implemented across desktop and mobile devices, supporting previous HCI research on context-aware and attention-centric systems. The high success rates on macOS and Android demonstrate that even without machine learning, environmentally triggered rules can deliver timely and relevant alerts. These results align with McCrickard et al.’s (2003) principle that notifications should only appear when they provide clear value and respect users’ attention flow. The positive user feedback, particularly regarding the low frequency and concise messaging, suggests that rule-based timing can reduce the cognitive burden typically associated with proactive systems. Furthermore, Lexi-Jarvis’s reliance on environmental triggers reflects Okoshi et al.’s (2015) findings that aligning notifications with user context decreases perceived intrusiveness.
	However, the inconsistencies on iOS reveal significant platform-dependent constraints, echoing broader concerns in the PWA literature about cross-platform reliability. These results indicate that while rule-based systems are feasible as transitional prototypes, improvements in token persistence, installation accessibility, and content personalization will be necessary before such systems can achieve fully seamless, JARVIS-like proactive assistance.​

	5. Discussion
	5.1 Contribution to Existing Literature and Prior Research
	5.2 Research Implications
	5.3 Limitations and Future Work
	5.3.1 Limitations
	5.4.2 Future work

	6. Conclusion
	References
	Appendices
	Appendix A: Key Code Snippets (Notification Trigger Function)
	
	
	
	
	
	
	
	Appendix B: Key Code Snippets (News Trigger and URL Transmission)
	​

